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Abstract. A phenomenological approach was applied to the dynamics of the intrinsic electric conductivity
of dielectrics in an electric field in order to analyze its contribution to dielectric losses. The proposed
differential equation contains only two parameters – the effective time τF of conductivity decay in an
electric field, and τR, the time describing the recovery rate of the conductivity after switching off the field.
The proposed approach predicts a linear dependence of specific conductivity of dielectrics on the sample
thickness, as experimentally confirmed by Du Pont [1] for Teflon FEP. The field and time (or frequency)
dependences of intrinsic conductivity and related dependences of dielectric losses were calculated, analyzed
and illustrated with the published experimental data. The results show that the discussed contribution in
dielectric losses is characterized by two hyperbolas (instead of one) while the distance between the branches
depends on the intensity of applied electric field.

PACS. 72.20.Ht High-field and nonlinear effects – 72.80.Sk Insulators – 77.22.Gm Dielectric loss and
relaxation

1 Introduction

Developing a theoretical description of the intrinsic elec-
tric conductivity in dielectrics is a difficult and arduous
task. An exact description of the mechanisms of electric
conductivity in dielectrics leads to a set of partial differ-
ential equations, which are unsolvable analytically. Exper-
imental study of intrinsic conductivity is also a complex
task, since the application of the electric field usually in-
volves some additional processes that disturb the time de-
pendence of conductivity. For this reason, a large number
of research papers and monographs devoted to the electri-
cal conductivity of dielectrics focus on specific problems
such as generation and annihilation of charge carriers and
transport mechanisms.

Early studies of the nonlinear dielectric effect (NDE)
of low conductance polar liquids [1–5], where Joule heat
obscures the measurements, motivated studies of the elec-
trical conductivity of dielectrics. Initial experiments [6]
and theoretical work [7] began in the sixties. Silver applied
of the gas conductivity model to the solid phase [8], and
implementation of the dimensionless form of Thomson’s
equations has led to a description of the selected station-
ary and non-stationary states [9,10].

A well known phenomenon, which accompanies the ap-
plication of an electric field to low conductivity media,
is a decrease of the electric conductivity G and its re-
covery after switching off the field. Schematically this is
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Fig. 1. Decay and recovery of relative, intrinsic conductivity of
dielectrics (schematically, see text). Experimental points (cir-
cles) obtained for nitrobenzene illustrate the typical behavior.

shown in Figure 1, where we use the relative conductivity
g(t) ≡ G(t)/G0 rather than G, where G0 denotes the equi-
librium value for E = 0. This is usually a very complex
process involving several contributions of different origin
e.g. the generation and annihilation of natural charge car-
riers in the dielectric, creation of non-compensated spatial
charge areas and, in a fluid state, the motion of charged
macroscopic particles.

No matter what kind of processes are responsible for
the dynamics of the intrinsic, specific conductivity in an
electric field, it should lead to a nonlinear dependence of
dielectric losses (ε′′) on the field strength. The aim of this
work is to find an approximate picture of this effect. To
achieve this goal we have to formulate the above defined
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function g(E, t) in such a way that it accounts for the
experimental points (circles) shown in Figure 1.

Difficulties in obtaining a rigorous theoretical descrip-
tion of electrical conductance of dielectrics lead us to
abandon the idea of modeling the mechanisms responsi-
ble for the observed processes. Instead, we choose a phe-
nomenological approach. We seek therefore an analytical
solution g(E, t) describing the conductivity decay in the
static electric field E, and its recovery after switching off
the field. Finally we need a function ε′′(E, ω) to simulate
the intrinsic conductivity background that obscures the
dielectric spectra at low frequencies. A similar approach
reported earlier [11,12] has lead to the explanation of the
unusual stability of the electret charge as well as to an
understanding of the effect of improved stability of the
electrets decreasing thickness.

2 Phenomenological approach

Considering the mathematical complication we will not at-
tempt a description of the mechanisms responsible for the
conductivity evolution in an electric field. Instead, we will
confine our attempt to a phenomenological approxima-
tion of the time dependences of current and conductivity.
Therefore, we propose the following semi-empirical differ-
ential equation describing the conductivity decay and its
recovery:

dg (t)
dt

=
1 − [g (t)]2

τR
− g (t)

τF
. (1)

The equation contains only two parameters: times τF

and τR – the effective time of conductivity decay in an
electric field, and the time of the recovery of conductivity
after switching off the field, respectively (see Fig. 1).

Equation (1), resembling Thomson’s model, suggests
the approximate intuitive physical meaning of the param-
eters. Namely, τF , in a crude approximation, expresses
the mean time of flight τF

∼= l/(E
√

u+u−), whereas the
approximate relation τR

∼= 1/
√

α β describes the rate of
conductivity recovery. In the above relations l denotes the
distance between electrodes and u – the carrier mobilities,
α – recombination coefficient and β – the rate of carrier-
pair creation. With

∆ ≡ τ2
R + 4 τ2

F and B =
√

∆ + τR + 2g (0) τF√
∆ − τR − 2g (0) τF

the solution of equation (1) becomes:

g (t) =

√
∆

2τF

sinh

[ √
∆

τF τR
t + ln |B|

]

cosh

[ √
∆

τF τR
t + ln |B|

]
+ sgn (B)

− τR

2τF
. (2)

If the electric field is on, the parameter B is negative, and
the function g (t) is described by a hyperbolical cotangent.
After switching the field off, B > 0 and the function g (t)

Fig. 2. The dependence of final relative conductivity g∞ on
the ratio τR/τF .

now adopts the form of a hyperbolical tangent. Since it is
analytical, the equation (2) can be used to compare with
the experimental data.

In Figure 1 only one example – the decay and recovery
of conductivity observed in nitrobenzene is shown, but a
similar fit was made for a number of organic compounds
including nitro and cyano derivates and higher alcohols,
and their solutions in nonpolar and polar solvent. The
results show that to a reasonable degree of approximation,
the proposed phenomenological approach reproduces the
dynamics of the intrinsic conductivity of dielectrics.

Very important and interesting is the boundary case –
the dynamic equilibrium in the electric field is achieved
for t → ∞ with the respective minimum value of the
conductivity g∞ (see Fig. 2). Evaluating the approximate
formula

τR/τF
∼= n0uE/(βl) (3)

g∞ can be expressed as

lim
t→∞ g (t) ≡ g∞ =

1
2




√(
τR

τF

)2

+ 4 − τR

τF




=
2βl√

n2
0u

2E2 + 4β2l2 + n0uE
. (4)

Figure 2 shows a plot of equation (4). Two limiting values
can be distinguished:

(a) For small values of the fraction τR/τF , i.e. in
weak–field limit E � β l/n0u, one obtains g∞ =
2β l/(2β l + n0u E) ≈ 1. Such a situation is often ob-
served in high conductivity materials, where the carrier
creation rate β reaches relatively large values.

(b) On the other hand, in the strong field limits, i.e.
when E � β l/n0u, we get

g∞ = β l/(n0 u E) (5)

and the current density does not depend on the electric
field strength (Eq. (6)).
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Fig. 3. Dependence of the intrinsic conductivity G of Teflon r©
FEP on sample thickness [13].

Effectively, under the strong field condition, almost all
the generated current carriers reach the electrodes. This
means that the current density j∞ is determined by the
rate of carrier generation β and, as follows from equa-
tion (5), linearly depends on sample thickness (l):

j∞ = G∞E = β q l (6)

where q denotes the carrier charge. Somewhat unexpect-
edly, such behavior of the specific conductivity has been
confirmed by Du Pont laboratories [13] for Teflon r© FEP
(Fig. 3). This particular form of the conductivity depen-
dence G∞(l) reflects the volume character of the carrier
generation process. Under equilibrium conditions, on the
other hand, their annihilation in the electric field occurs
within the two dimensional space of the electrode surface.

One should still bear in mind the strong limitations of
this proposed method resulting from its phenomenological
character. Above all, the physical interpretation of param-
eters τF and τR as related to physical quantities (such as
carrier mobility and rate of creation and recombination co-
efficient) is a very crude approximation. In particular, as
a result of the formation of space charge, both the electric
field distribution and the proposed approximate physical
meaning of the parameters τF and τR can be strongly dis-
turbed. For the same reason, the equation (4) describing
the conductivity g∞ for dynamic equilibrium has also only
an approximate meaning. Less significant is the field ef-
fect on mobilities u+ and u−, since it is observed for very
strong fields, normally not applied in dielectric relaxation
studies as discussed below.

3 Conductivity in alternating electric field

Numerous studies of dielectrics are carried out in alter-
nating electric fields with a wide range of frequencies ω.

Fig. 4. Current densities versus time and respective spec-
tra (both in arbitrary units) for three selected values of the
frequency ω τF .

The dielectric relaxation studies in low frequency range
are difficult to accomplish owing to a troublesome back-
ground effect related to the DC conductivity. The phe-
nomenological approach proposed here provides a means
to evaluate and to account for the relative contribution
of this conductivity. Adopting a sine-wave electric field of
the form E = E0 sin (ω t) we may, just as before (Eq. (1)),
write the rate equation of relative electrical conductiv-
ity as

d g (t)
d t

=
1 − g2 (t)

τR
− sin (ω t) g (t)

τF
, (7)

where τF
∼= l/(ES u) is now related to the effective field

strength value ES . Unfortunately, this equation cannot
be solved analytically and numerical methods have to be
used.

Dependence of the conductivity on time and the elec-
tric field strength leads to a nonlinear relationship between
the current densities and these parameters. Current ver-
sus time, and respective spectra expressed in arbitrary
units for τR/τF = 100 are illustrated in Figure 4 for three
selected values of frequency. Similar graph are obtained
for constant frequency versus the ratio τR/τF (or electric
field strength). The outcome of the calculation is that, ir-
respective of the field strength, the ratio τR/τF is one of
the decisive factors, rather than the magnitude ES itself.
In practice, we apply a field that can be considered as
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Fig. 5. Logarithm of the average conductivity Log〈g (ω)〉
versus Log ω. The ratio τR/τF , which can be taken as a mea-
sure of the electric field strength, is the varied parameter.

“strong” when the following condition of the ES/l ratio
is fulfilled:

τR

τF

∼= G0

β q

ES

l
> 1. (8)

In the “strong” field, in this meaning, the sine–like
function of the current density appears distorted. For this
reason, in the case of the AC electric field, we have to
define an average electric conductivity

〈G (ω)〉 ≡

T/2∫
0

G (ω, t) E (ω, t) d t

T/2∫
0

E (ω, t) d t

. (9)

Results of the numerical calculations performed in a wide
range of frequencies and τR/τF ratios (or electric field –
see Eq. (3)) are shown in Figure 5. These show that in al-
ternating field the unique parameter τR/τF is significant,
in contrast to the steady field case where the two separate
times describing the time evolution of conductivity are
involved (see Eq. (2)). This property was tested empiri-
cally by calculations performed in the range of 10 orders
of magnitude for τF and 15 orders of magnitude for the
ratio τR/τF .

The ratio τR/τF directly relates to the rate of carrier
generation β (Eq. (3)). It can be determined by measuring
g∞ ≡ G∞/G0 in a steady electric field because, according
to equation (4),

τR

τF
=

1 − g2
∞

g∞
. (10)

Two measurements must be made to achieve this goal:
(i) with the careful choice of time t > τF one obtains G∞,
(ii) during t � τF one measures G0 in a pulse mode. Some-
times it is more convenient to apply the above unambigu-
ous relation between 〈g (ω)〉 and τR/τF , outlined with the

Fig. 6. Logarithm of the dielectric losses versus Log (ωτF ).
The equilibrium conductivity was taken to be G0 = 10−13 S/m.

results in Figure 5. Hence, resorting to only two measure-
ments of the conductivity – in low frequency range (G∞),
and at high frequencies (G0) – one can experimentally de-
termine the effective value of τR/τF ratio. It should be
noted however, that in the case of AC field E means the
effective electric field strength.

4 Component of dielectric losses related
to the intrinsic conductivity

We will now use the well-known relationship between spe-
cific electrical conductivity and dielectric losses:

ε′′ (ω) = G/ε0ω. (11)

When the conductance G does not depend on external
parameters, as commonly assumed, one obtains the well-
known, hyperbolical relation between dielectric losses and
frequency. However in our case, when conductance de-
pends on time and the intensity of electric field, the de-
pendence becomes more complex.

Results of our calculations are shown in Figure 6. As
an example, we have assumed the initial, equilibrium con-
ductivity G0 = 10−13 S/m – a sample of relatively low
conductivity. The results show, as one might expect, that
for weak electric field (comp. Eq. (8))

ES <
βgl

G0

τF

τR

the hyperbolical dependence of dielectric losses is pre-
dicted. One obtains such dependence also at high frequen-
cies (ωτF > 10). However, for stronger fields and lower
frequencies the model predicts a clear-cut deviation from
hyperbolical dependence.

Schematically the results for the frequency dependence
of the intrinsic conductivity and dielectric losses are shown
in Figure 7. The conductivity dependence G (E, ω) is char-
acterized by two dynamical equilibrium states: starting



J.A. Ma�lecki: Phenomenological model of nonlinear dielectric losses related to the intrinsic conductivity of dielectrics 239

Fig. 7. Schematic representation of the frequency dependence
of the intrinsic conductivity G and the related contribution of
dielectric losses ε′′ presented in double logarithmic scale.

from the value G0 at frequency ω > ωF and reaching
G∞ at low frequency range for ω � ωF , with an al-
most linear region in between. Using a double logarithmic
scale, the two linear branches characterize the dielectric
losses ε′′ (E, ωE).

5 Comparison with experimental results

The characteristic decay time τF is, in crude approxima-
tion, equal to the mean time of flight τF

∼= l/(E u) of the
current carriers. In dielectric liquids the carrier’s mobility
is usually of the order of 10−6–10−10 m2 V−1 s−1. With
one volt applied to 1mm thick sample, the characteristic
frequency is of the order of 10−1–103 Hz. In solid state, the
effective mobilities may attain values over a much broader
range, consequently the discussed phenomena can be ob-
served in a wider range of frequencies.

Adopting similar procedures one may evaluate the crit-
ical intensity Ec of electric field using equations (3) and (8)
and assuming τR/τF = 1:

Ec =
bq l

G0
=

j∞
(d j∞/d E)E=0

.

In practice, for weakly conducting sample Ec is of the
order of 1 V or even less.

In the literature one finds the results of experimen-
tal study of intrinsic conductivity and dielectric losses in
low frequencies, between 10−3–103 Hz. In Figure 8 we
give the results of conductivity measurements published
by Jonscher and Frost [14] for chalcogenide glass over a
low frequency range. The shape of the plots suggests that
the mechanism we propose and discuss may be respon-
sible for the observed drop in conductivity occurring be-
tween 0.1–10 Hz.

In the next two figures (Figs. 9–10) we quote the
original results of the frequency dependence of the di-
electric losses in ionic conductor Hollandite [15] and
PbTiO3–PVDF composites [16], correspondingly. In both

Fig. 8. The frequency dependence of the conductivity of
chalcogenide glass for a range of temperatures [14]. A drop
in conductivity is clearly seen.

Fig. 9. The frequency dependence of the dielectric losses of the
ionic conductor Hollandite K1.8Mg0.9Ti7.1O16 [15]. The arrows
indicate the most characteristic dependence (comp. Fig. 8).

 

 

Fig. 10. The low frequency dielectric relaxation of
PbTiO3–PVDF composite [16]. The two linear branches can
be distinguish in the frequency dependence of dielectric losses
ε′′ (comp. Fig. 8).
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cases the characteristic two linear branches can be identi-
fied. In the literature, one can find many similar results,
although the slopes of the linear branches are usually far
from unity. Moreover, for an unambiguous interpretation
of these data it would be required to examine the effect
of magnitude of the electric field on the magnitude of the
decrease in electrical conductivity, or on the magnitude of
the frequency shift in the case of dielectric losses. Unfor-
tunately, there are no such systematic studies available in
the literature, which would provide the data for a suffi-
ciently large range of electric field intensities.

6 Conclusions

A semi-empirical description of the dynamics of the intrin-
sic electrical conductivity of dielectrics using two param-
eters τF and τR is shown. These parameters have some
intuitive, approximate physical meaning: τF denotes the
effective, apparent time of conductivity decay, which may
be associated with the time of flight τF

∼= l/(E
√

u+u−)
of the current carriers in an electric field. τR denotes the
apparent recovery time of conductivity after switching the
field off, and can be approximated as one over the square
root of the product of the recombination coefficient α and
the carrier creation rate β, i.e. τR

∼= 1/
√

α β.
The proposed approach predicts the linear depen-

dence of specific conductivity of low-conducting substances
on the sample thickness. The results previously reported
by Du Pont [13] for Teflon FEP agree with the above
predictions.

The phenomenological model was applied for calcula-
tions of the electric field and frequency dependence of the
dielectric losses component ε′′ (E, ω) related to the dy-
namics of the intrinsic conductivity G (E, t) of dielectrics.

Numerical methods were used for calculating ε′′ (E, ω).
We find that the influence of field E becomes essential
when its frequency ω < 1/τF and τR/τF � 1, e.g. for
“strong” electric field E � β l/(n0u).

The conductivity dependence G (E, ω) is characterized
by two dynamical equilibrium states: starting from the
value G0 at frequency ω > 1/τF , reaching G∞ at low fre-
quency range ω � 1/τF , with a nearly linear transition in
between (Figs. 6, 7). The related dielectric losses ε′′ (E, ω)
are characterized by two linear branches (Figs. 5, 7). Such
behavior can be found in the published experimental data.

This paper was supported by Grant No. 2 P03B 127 22 from
the State Committee for Scientific Research, Poland.
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